If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+y=10100
We move all terms to the left:
y^2+y-(10100)=0
a = 1; b = 1; c = -10100;
Δ = b2-4ac
Δ = 12-4·1·(-10100)
Δ = 40401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{40401}=201$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-201}{2*1}=\frac{-202}{2} =-101 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+201}{2*1}=\frac{200}{2} =100 $
| 8x(4x+60)=180 | | 8x(4x+60)=90 | | 5/8p=7 | | y^2+y=14520 | | 8x=(4x+60) | | (x/9)*15−47=28 | | -4/5t=2 | | 6x-8+3(2x+4)=-2(x+6) | | (6)=-4/3x6+5 | | 4x^2+432=0 | | -2/3y=-15 | | 7(x-2)-7=-5(-4x+3)-4x | | -3(2w-4)+2w=4(w+4) | | -5(-7x+7)+6=-99 | | 5(u-4)=-9u-48 | | -4/3x3=5 | | 5(I-4)=-9u-48 | | 9y+26=7(y+4) | | 4(u+5)=8u+48 | | -4(x+1)=-8x-32 | | 6-4/7x=13+3/7x | | (2x+9)(4x-7)=0 | | 5n+5(7+4n)=185 | | 16x^2+30=41x | | 3n=64+n | | 38=2u+8 | | -17t-9-18t=3(-9t+9)-10t | | x+100=x=x+10 | | -10-9(-5m+17)=16m+11 | | 2(18-18z)=-3(13z-16) | | 3(8y+14)=-18y | | −4+5x=2x+3(x+1) |